Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 970, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302477

RESUMEN

X-ray Free Electron Lasers (XFEL) are cutting-edge pulsed x-ray sources, whose extraordinary pulse parameters promise to unlock unique applications. Several new methods have been developed at XFELs; however, no methods are known, which allow ab initio atomic level structure determination using only a single XFEL pulse. Here, we present experimental results, demonstrating the determination of the 3D atomic structure from data obtained during a single 25 fs XFEL pulse. Parallel measurement of hundreds of Bragg reflections was done by collecting Kossel line patterns of GaAs and GaP. To the best of our knowledge with these measurements, we reached the ultimate temporal limit of the x-ray structure solution possible today. These measurements open the way for obtaining crystalline structures during non-repeatable fast processes, such as structural transformations. For example, the atomic structure of matter at extremely non-ambient conditions or transient structures formed in irreversible physical, chemical, or biological processes may be captured in a single shot measurement during the transformation. It would also facilitate time resolved pump-probe structural studies making them significantly shorter than traditional serial crystallography.

2.
J Mol Biol ; 436(5): 168439, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38185322

RESUMEN

The understanding of signal transduction mechanisms in photoreceptor proteins is essential for elucidating how living organisms respond to light as environmental stimuli. In this study, we investigated the ATP binding, photoactivation and signal transduction process in the photoactivatable adenylate cyclase from Oscillatoria acuminata (OaPAC) upon blue light excitation. Structural models with ATP bound in the active site of native OaPAC at cryogenic as well as room temperature are presented. ATP is found in one conformation at cryogenic- and in two conformations at ambient-temperature, and is bound in an energetically unfavorable conformation for the conversion to cAMP. However, FTIR spectroscopic experiments confirm that this conformation is the native binding mode in dark state OaPAC and that transition to a productive conformation for ATP turnover only occurs after light activation. A combination of time-resolved crystallography experiments at synchrotron and X-ray Free Electron Lasers sheds light on the early events around the Flavin Adenine Dinucleotide (FAD) chromophore in the light-sensitive BLUF domain of OaPAC. Early changes involve the highly conserved amino acids Tyr6, Gln48 and Met92. Crucially, the Gln48 side chain performs a 180° rotation during activation, leading to the stabilization of the FAD chromophore. Cryo-trapping experiments allowed us to investigate a late light-activated state of the reaction and revealed significant conformational changes in the BLUF domain around the FAD chromophore. In particular, a Trpin/Metout transition upon illumination is observed for the first time in the BLUF domain and its role in signal transmission via α-helix 3 and 4 in the linker region between sensor and effector domain is discussed.


Asunto(s)
Adenilil Ciclasas , Proteínas Bacterianas , Oscillatoria , Fotorreceptores Microbianos , Adenosina Trifosfato/química , Adenilil Ciclasas/química , Adenilil Ciclasas/efectos de la radiación , Proteínas Bacterianas/química , Proteínas Bacterianas/efectos de la radiación , Flavina-Adenina Dinucleótido/química , Transducción de Señal , Espectroscopía Infrarroja por Transformada de Fourier , Oscillatoria/enzimología , Dominio Catalítico , Triptófano/química , Metionina/química , Fotorreceptores Microbianos/química , Fotorreceptores Microbianos/efectos de la radiación , Activación Enzimática
3.
Ultrason Sonochem ; 101: 106715, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38061251

RESUMEN

Hydrodynamic cavitation is useful in many processing applications, for example, in chemical reactors, water treatment and biochemical engineering. An important type of hydrodynamic cavitation that occurs in a Venturi tube is vortex cavitation known to cause luminescence whose intensity is closely related to the size and number of cavitation events. However, the mechanistic origins of bubbles constituting vortex cavitation remains unclear, although it has been concluded that the pressure fields generated by the cavitation collapse strongly depends on the bubble geometry. The common view is that vortex cavitation consists of numerous small spherical bubbles. In the present paper, aspects of vortex cavitation arising in a Venturi tube were visualized using high-speed X-ray imaging at SPring-8 and European XFEL. It was discovered that vortex cavitation in a Venturi tube consisted of angulated rather than spherical bubbles. The tangential velocity of the surface of vortex cavitation was assessed considering the Rankine vortex model.

4.
J Synchrotron Radiat ; 30(Pt 6): 1030-1037, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729072

RESUMEN

The high pulse intensity and repetition rate of the European X-ray Free-Electron Laser (EuXFEL) provide superior temporal resolution compared with other X-ray sources. In combination with MHz X-ray microscopy techniques, it offers a unique opportunity to achieve superior contrast and spatial resolution in applications demanding high temporal resolution. In both live visualization and offline data analysis for microscopy experiments, baseline normalization is essential for further processing steps such as phase retrieval and modal decomposition. In addition, access to normalized projections during data acquisition can play an important role in decision-making and improve the quality of the data. However, the stochastic nature of X-ray free-electron laser sources hinders the use of standard flat-field normalization methods during MHz X-ray microscopy experiments. Here, an online (i.e. near real-time) dynamic flat-field correction method based on principal component analysis of dynamically evolving flat-field images is presented. The method is used for the normalization of individual X-ray projections and has been implemented as a near real-time analysis tool at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of EuXFEL.

5.
IUCrJ ; 10(Pt 6): 662-670, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721770

RESUMEN

X-ray free-electron lasers (XFELs) can probe chemical and biological reactions as they unfold with unprecedented spatial and temporal resolution. A principal challenge in this pursuit involves the delivery of samples to the X-ray interaction point in such a way that produces data of the highest possible quality and with maximal efficiency. This is hampered by intrinsic constraints posed by the light source and operation within a beamline environment. For liquid samples, the solution typically involves some form of high-speed liquid jet, capable of keeping up with the rate of X-ray pulses. However, conventional jets are not ideal because of radiation-induced explosions of the jet, as well as their cylindrical geometry combined with the X-ray pointing instability of many beamlines which causes the interaction volume to differ for every pulse. This complicates data analysis and contributes to measurement errors. An alternative geometry is a liquid sheet jet which, with its constant thickness over large areas, eliminates the problems related to X-ray pointing. Since liquid sheets can be made very thin, the radiation-induced explosion is reduced, boosting their stability. These are especially attractive for experiments which benefit from small interaction volumes such as fluctuation X-ray scattering and several types of spectroscopy. Although their use has increased for soft X-ray applications in recent years, there has not yet been wide-scale adoption at XFELs. Here, gas-accelerated liquid sheet jet sample injection is demonstrated at the European XFEL SPB/SFX nano focus beamline. Its performance relative to a conventional liquid jet is evaluated and superior performance across several key factors has been found. This includes a thickness profile ranging from hundreds of nanometres to 60 nm, a fourfold increase in background stability and favorable radiation-induced explosion dynamics at high repetition rates up to 1.13 MHz. Its minute thickness also suggests that ultrafast single-particle solution scattering is a possibility.

6.
J Synchrotron Radiat ; 29(Pt 5): 1273-1283, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36073887

RESUMEN

Pump-probe experiments at X-ray free-electron laser (XFEL) facilities are a powerful tool for studying dynamics at ultrafast and longer timescales. Observing the dynamics in diverse scientific cases requires optical laser systems with a wide range of wavelength, flexible pulse sequences and different pulse durations, especially in the pump source. Here, the pump-probe instrumentation available for measurements at the Single Particles, Clusters, and Biomolecules and Serial Femtosecond Crystallography (SPB/SFX) instrument of the European XFEL is reported. The temporal and spatial stability of this instrumentation is also presented.


Asunto(s)
Rayos Láser , Cristalografía por Rayos X , Radiografía , Rayos X
7.
Opt Lett ; 45(15): 4248-4251, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735269

RESUMEN

We present a novel, to the best of our knowledge, Hartmann wave front sensor for extreme ultraviolet (EUV) spectral range with a numerical aperture (NA) of 0.15. The sensor has been calibrated using an EUV radiation source based on gas high harmonic generation. The calibration, together with simulation results, shows an accuracy beyond λ/39 root mean square (rms) at λ=32nm. The sensor is suitable for wave front measurement in the 10 nm to 45 nm spectral regime. This compact wave front sensor is high-vacuum compatible and designed for in situ operations, allowing wide applications for up-to-date EUV sources or high-NA EUV optics.

8.
Appl Opt ; 59(5): 1363-1370, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-32225398

RESUMEN

With high-harmonic generation (HHG), spatially and temporally coherent XUV to soft x-ray (100 nm to 10 nm) table-top sources can be realized by focusing a driving infrared (IR) laser on a gas target. For applications such as coherent diffraction imaging, holography, plasma diagnostics, or pump-probe experiments, it is desirable to have control over the wave front (WF) of the HHs to maximize the number of XUV photons on target or to tailor the WF. Here, we demonstrate control of the XUV WF by tailoring the driving IR WF with a deformable mirror. The WFs of both IR and XUV beams are monitored with WF sensors. We present a systematic study of the dependence of the aberrations of the HHs on the aberrations of the driving IR laser and explain the observations with propagation simulations. We show that we can control the astigmatism of the HHs by changing the astigmatism of the driving IR laser without compromising the HH generation efficiency with a WF quality from λ/8 to λ/13.3. This allows us to shape the XUV beam without changing any XUV optical element.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...